
 Ramanuj an -For Lowbrows

 Bruce C. Berndt and S. Bhargava

 "No, Inspector," he said. "It is not at all like that, I am assuring you. You see, for a person of my
 sort-and I admit that we are a rare breed-numbers are so much in our minds there is hardly any
 question of writing them down, let alone adding one to another." ...

 "Let me give you one instance," he said. "Before I was beginning work just now, I was taking a
 short stroll, and I happened to see a handcartwalla. Now, being the sort of chap I am, I of course
 notice the number burned on the side of the cart: seventeen-twenty-nine. Now, does that mean
 anything to you yourself ?"

 "It is the number on the cart," Ghote answered guardedly. "By law it must be there."
 Raghu Barde smiled his warm smile again.

 "Ah, yes, the police view. But what do you think those figures meant to me? You would never
 guess. But the moment I was seeing them I said: Aha, the smallest number expressible as a sum of
 two cubes in two different ways. And, you know, if ever I am getting to marry, I suppose I will want
 a wife whose birth date comes to some number pleasing to me like that."

 "I see," Ghote said.

 And, although the mumbo jumbo about cubes and expressible meant nothing to him, and he
 could not help thinking that to choose a wife by number would be a much riskier proceeding than to
 let the astrologers choose one for you, he did dimly see what a different sort of life Raghu Barde
 lived from that of the common number-unencumbered man.

 H. R. F. Keating

 Dead on Time

 1. INTRODUCTION. To celebrate the centenary of Ramanujan's birth, in June,
 1987, an international conference was held at The University of Illinois at
 Urbana-Champaign [1]. Numerous roads through varied scenery brought re-
 searchers from Ramanujan's papers, problems, letters, notebooks, and unpub-
 lished manuscripts to a panoply of areas of contemporary research, including
 partitions, mock theta-functions, statistical mechanics, Lie algebras, probabilistic
 number theory, modular forms, elliptic functions, complex multiplication, hyperge-
 ometric series, q-series, asymptotic expansions, and beta integrals. Very few
 mathematicians have ever had such a broad impact on mathematical research.
 Although many results presented at the conference could be understood and
 appreciated by mathematicians outside these areas of research, this was a confer-
 ence for highbrows.

 Many of Ramanujan's beautiful discoveries, however, are easily understood, are
 elementary, and appeal to a wide variety of tastes. Thus, this paper is written for
 lowbrows. Only elementary algebra is needed to prove the lion's share of theorems
 reported here. Most are found in the unorganized portion of Ramanujan's second
 notebook, his third notebook, and problems that he posed for readers of the
 Journal of the Indian Mathematical Society. The results we describe fall under the
 headings of elementary algebra, equal sums of powers, and elementary number
 theory.
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 We begin our expedition in a taxi-cab as we recount G. H. Hardy's riding in
 taxi-cab no. 1729 to visit Ramanujan while lying ill in Putney. Some historical
 remarks are offered on the two representations 13 + 123 = 93 + 103 of 1729. This
 leads us to Euler's solution, rediscovered by Ramanujan in a simpler form, of the
 diophantine equation A3 + B3 = C3 + D3.

 We turn from equal sums of third powers to equal sums of fourth powers and
 ask "Did Ramanujan ever read Mathematical Magazine?" No, we are not speak-
 ing of the journal, Mathematics Magazine, published by the MAA, with the first
 issue appearing under a slightly different title in 1926, six years after Ramanujan's
 death. Some historical remarks will be made about Mathematical Magazine.

 We next temporarily stop our journey to view what the authors consider to be
 one of the most captivating, enthralling finite identities in all of mathematics. Is
 this marvelous identity simply an accident on the road to sums of powers? Or are
 we at the base of the Himalayas-facing away from the mountains?

 We next encounter three types of systems of equations. The first system leads us
 to sequences that decrease for a while, then increase for a while, etc. We must
 have roamed to a college campus, for these sequences involve radicals, infinitely
 many of them. Like most radicals, these have interesting properties. The second
 system leads us to a visit with S. Ramanujam. No, that is not a misprint! Is he
 really Ramanujan, or is he someone else? Our third system was solved beautifully
 by Ramanujan in his third published paper, but he did not realize that J. J.
 Sylvester had solved this system in 1851, nor was Ramanujan aware of the
 implications of his work, We provide a sketch of Ramanujan's clever proof.

 Proceeding from a sketch to a complete landscape, we provide proofs of some
 interesting properties of roots of cubic polynomials that Ramanujan discovered. As
 applications, we offer two curious trigonometric identities.

 For our last proof, we establish sharp bounds for a sum giving the largest power
 of a prime dividing n!.

 We conclude our paper with some approximations to 7r.
 Several references will be made to Ramanujan's notebooks [26], published in

 two volumes. The second volume contains the second and third notebooks, and all
 page numbers in this paper refer to the pagination in this volume.

 2. SUMS OF POWERS. Many readers are familiar with the famous taxi-cab story
 immortalized by fHardy [27, p. xxxv]. "I remember once going to see him when he
 was lying ill at Putney. I had ridden in taxi-cab no. 1729, and remarked that the
 number seemed to me rather a dull one, and that I hoped it was not an
 unfavourable omen. 'No,' he replied, 'it is a very interesting number; it is the
 smallest number expressible as a sum of two cubes in two different ways."' (It is
 clear that the author of the opening passage about a handcart with 1729 imprinted
 on its side was acquainted with this delightful incident in the life of Ramanujan
 and Hardy. A handcartwalla is a person who pulls a two-wheeled handcart,
 normally carrying one or two people, and is no longer a common sight in present
 day India. The suffix "walla" comes from Hindi.) In fact, Ramanujan had previ-
 ously recorded these two representations for 1729, 13 + 123 and 93 + 103, on page
 225 of his second notebook [26]. However, this example appears to have been first
 noticed by B. Frenicle de Bessy in 1657. Frenicle and J. Wallis each found
 additional examples for two equal sums of two cubes. A bitter argument ensued
 with each accusing the other of using trivial methods. Since P. Fermat also
 frequently was feuding with these two men, letters detailing their acrimony can be
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 The frontispiece of a volume of Wordsworth's poetry. The volume was awarded to the young
 Ramanujan for his "outstanding work in Maths." Such prizes for mathematical contests were common
 in Ramanujan's hometown, Kumbakonan, and throughout India of the period.

 found in Fermat's Oeuvres [11, pp. 419-420; 427-457] and E. T. Bell's book [2,
 Chapter 12], as well as in L. E. Dickson's History [8, p. 552]. In 1898, C. Moreau
 [18] found the ten solutions of A3 + B3 = C3 + D3 with the sums less than
 100,000. After 1729, the next largest sum is 4104 = 23 + 163 = 93 + 153.

 From another viewpoint, Ramanujan provided Hardy with solutions to the
 classical diophantine equation

 A3 + B3 + C3 = D3. (2.1)

 L. Euler [10] completely solved (2.1) for positive or negative rational solutions. At
 three places in his notebooks, Ramanujan addresses the problem of finding
 solutions of (2.1). In Entry 20(iii) of Chapter 18 and on page 266 in the unorga-
 nized portion of his second notebook, Ramanujan provides parametric solutions to
 (2.1), but they are not as general as Euler's. But near the end of his third notebook
 [26, p. 387], Ramanujan offers a family of solutions equivalent to Euler's general
 solution. Both Hardy [13, p. 11] and G. N. Watson [30] discussed one of Ramanu-
 jan's less general solutions to (2.1). They had no knowledge of Ramanujan's
 general solution, because they did not have access to the third notebook. We quote
 Ramanujan's theorem.

 Theorem. If

 a2 + af3 + p2 3Ay2,
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 then

 (a + A2y)3 + (A13 + Y)3 = (Aa + Y)3 + (1 + A2y)3* (2.2)
 As an example, we recover the two pairs of aforementioned taxi-cab cubes by

 putting (a, ,3, y, A) = (3,0, 1,3) in (2.2).
 Although several formulations equivalent to Euler's general solution have been

 discovered, Ramanujan's formulation (2.2) appears to be the simplest of all. The
 problem of completely characterizing all positive integral solutions of (2.1) is
 unsolved.

 On the other hand, Euler conjectured that there were no positive integral
 solutions to

 A4 + B4 + C4 = D4.

 It was not until 1988 that Euler's conjecture was shown to be false by N. D. Elkies

 [9], who found an infinite class of solutions.
 Ramanujan derived several theorems providing infinite families of solutions for

 equal sums of powers. For example, toward the end of this third notebook [26,
 p. 384], he writes two parametric solutions for representing a fourth power as a
 sum of five fourth powers.

 Theorem. If s, t, m, and n are arbitrary, then

 (8S2 + 40st - 24t2)4 + (6s2 - 44st - 18t2)4 + (14s2 - 4st - 42t2)4

 +(9s2 + 27t2)4 + (4S2 + 12t2)4 = (15S2 + 45t2)4 (2.3)
 and

 (4m2 - 12n2)4 + (3m2 + 9n2)4 + (2m2 - 12mn - 6n2)

 +(4m2 + 12n2)4 + (2m2 + 12mn - 6n2)4 - (5m2 + 15n2)4. (2.4)

 Ramanujan recorded several examples. For instance, if we set s = 1 and t = 0

 in (2.3), we find that

 44 + 64 + 84 + 94 + 144 = 154.

 Formula (2.3) is due to C. B. Haldeman [12, pp. 289-290] in 1904. Uncannily,
 Ramanujan used the same notation and recorded the terms in the same order as
 Haldeman! Likewise, (2.4) was established by Haldeman [12, p. 289] and slightly
 later by A. Martin [15, pp. 325-326, 331]. Ramanujan does not use Haldeman's
 notation in (2.4) but does employ Martin's notation!

 Ramanujan recorded his results in notebooks from about 1903 until he departed

 for England in 1914. The 16 chapters in the first notebook and the 21 chapters in
 the second evince a progressive maturation from more elementary mathematics to
 much deeper results. The third notebook, however, contains both very elementary
 results as well as advanced results. While the latter theorems may have been
 recorded in Cambridge, the former results were probably recorded early in the
 period 1903-1914. Since in India Ramanujan did not have access to even the
 primary mathematical journals of his day, it is extremely unlikely that he could
 have seen the obscure journal, Mathematical Magazine, in which Martin and
 Haldeman published their results. Thus, the notation in (2.3) and (2.4) being
 identical with that of Haldeman and Martin, respectively, must be coincidental.

 Mathematical Magazine was founded and edited by Martin and was devoted to
 "elementary mathematics." Issues of the first volume were published quarterly in
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 1882-1884 at a cost of 50 cents per issue or one dollar per year. The second and
 last volume of 12 issues was published over the years 1890-1904, with the last four
 issues appearing in January, i895; January, 1896; December, 1898; and January,
 1904. The last issue contains four papers, three by Martin and one by Haldeman.
 In the penultimate issue, under the heading "Editorial Items," we learn that
 "Since No, 10 of the Magazine was published; three able contributors have
 'crossed over' and 'passed beyond the confines of earth.'" It is likely that an even
 greater number "crossed over" between the 11th and 12th issues. Possibly due to
 complaints registered by readers disgruntled over the irregularity at which issues
 appeared, the price per issue had dropped to 30 cents.

 Toward the end of the third notebook [26, p. 386], Ramanujan records one of
 the most fascinating identities we have ever seen.

 Theorem. Let a, b, c, and d denote any numbers such that ad - bc. Then

 64((a + b+c)6 + (b + d)6 (c + d + )6 - (d + a + b)6

 +(a - d)6 - (b - C)6)

 X((a+ b + c) + (b + c + d) - (c + d + a) - (d +a+b)

 +(a - d)'0 - (b - c)'0)

 = 45((a + b + c)8 + (b + c + d)8 - (c + d + a)8 - (d + a + b)8

 +(a - d)8 - (b - C)8}2. (2.5)

 The hypothesis ad = bc was omitted by Ramanujan, although it does appear as
 a hypothesis for some related results on the previous page.

 We first transcribe (2.5) into a somewhat more transparent form. For each
 positive integer m, set

 F2m(a, b, c, d) = (a + b + C)2m + (b + c + d)2m - (c + d + a)2m

 -(d + a + b)2m + (a - d)2m _ (b- C)2m.
 Put b = ax, c = ay, and d = axy, which does not contravene the hypothesis
 ad bc. Then it is easy to see that

 F2m(a, b, c, d) = a2mf2m (X, Y),

 where

 f2m(X,Y) (1 +X y)2m + (X +y XY)2m + 1)2m

 (xy + 1 + x) +(1XY)2n _ (X _ Y)2m. (2.6)

 Hence, (2.5) can be put in the form

 64f6(x, y)f1O(x, y) = 45f82(x, y). (2.7)

 We first employed the computer algebra system Mathematica to verify (2.7).
 Next, using Mathematica, we attempted to find other identities like (2.7) involving
 f2m(x, y) for m < 10, but we were unsuccessful. We fortunately found a much
 more informative proof of (2.7) that is not merely a verification via computer
 algebra [6]. We will not repeat that proof here but instead offer a few additional
 remarks.
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 By inspection, we easily see that x = 0, 1, - 1, - 2, - 1/2 are zeros of f2m(x, y).
 By symmetry, y = 0, 1, - 1, -2, - 1/2 are also zeros. Since f2m has degree (at

 most) 2m in each of the variables x and y, it follows that f2(x, y) 0 f4(x, y).
 In our original notation, we have therefore proved that, if ad = bc, then

 (a + b + c)n + (b + c + d)n + (a -d)n

 = (c +d +a)n + (d +a +b)n + (b_c)n (2.8)

 where n = 2 or 4. These are the aforementioned results that appear on page 385
 of [26]. We have therefore returned to the problem of generating equal sums of
 biquadrates. Although many results have appeared in the literature yielding two
 equal sums of three biquadrates [8, pp. 653-657], none appear as simple as
 Ramanujan's identity (2.8).

 Are (2.5) and (2.7) merely accidents, or are they a manifestation of some far
 deeper theorem?

 3. ELEMENTARY ALGEBRA. In courses and texts on beginning calculus, stu-
 dents encounter many monotonic sequences in their study of sequences and series.
 An inquisitive student may ask for naturally occurring examples of sequences that
 increase for a while, then decrease for a while, etc. As we shall see, some infinite
 sequences of nested radicals of Ramanujan provide excellent examples.

 x; '+a, y z+a, and ze x+a. (3.1)
 Concomitantly, he asked for the e vl n on o n

 raias. Towardnuj the eandais second WNote ook [26 pp 305-07] RamanunS.

 recorded further and more general results. It is not difficult to see that x is a root
 of an octic polynomial. This polynomial can be factored over the quadratic field
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 Q(6/4a - 7 ) into one quadratic and two cubic factors. These factors are correctly
 given by Ramanujan in his solution [22], but the factors given in the solution
 printed in his Collected Papers [27, pp. 327-329] contain four sign errors.

 From the equalities (3.1), we find that

 x= a= + ay + 5/a + z =a + /a+ ia + x

 =x7/a+v'|/a+ \/a+la+ ~ . (3.2)

 Each square root should be considered two-valued, and so we are led to eight

 infinite sequences of nested radicals corresponding to the eight roots of our octic

 polynomial. First, we should determine those values of a for which the infinite
 radical in (3.2) converges. This is not an easy problem, but each of the eight
 sequences in (3.2) converges at least for a 2 2 [5, Chapter 22]. As a specific
 example, let

 a,l= a, a2= 2 a-v4i, a3= Va- Va + V ,

 a4= a-Va+ a+ ...

 where the sequence of signs -, +, +,... appearing in the nested radicals has
 period 3. A careful analysis shows that

 a6n +1 > a6n+2> a6n+3 > a6n+4

 and

 a6n+4< a6n+5 < a6n+6< a6n+7'

 for each nonnegative integer n. Furthermore,

 O < a4< <al < ... < a6n+4< a6n+7< a6n+l < . . < a7 <a, = Ca

 Thus, {a6n+l} and {a6n+4} converge. Next, it must be shown that {a3n+l} converges
 and, lastly, that {an} converges. The details in this analysis are not easy [5, Chapter
 22].

 If we solve the two cubic equations mentioned above, it is not easy, in general,
 to identify the roots with the appropriate infinite sequences of radicals. For
 example,

 A-1 2 1 2A + 1
 liman = + - 54a + A sin - arctan 3j , (3.3)

 where A = 54a - 7. We made these identifications by expanding both the
 algebraically determined roots and the infinite radicals around "a = oo." For
 example, both sides of (3.3) have the asymptotic expansions

 1 3 1

 2 8 VC 4a '

 as a tends to oo. For particular numerical examples, the proper identifications are
 easier to make. For instance, if a = 2 in (3.3),

 2sinl-I= 2-V2+ 2+2-
 181
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 Later, Ramanujan [25], [27, p. 332] submitted the similar problem of determin-
 ing the simultaneous solutions of the system,

 x2 = a + y, y2 = a +z, z2 = a + u, and U2 = a +x,
 to the Journal of the Indian Mathematical Society. Fourteen years elapsed before a

 solution by G. N. Watson [29] was published, while another solution can be found
 in [5, Chapter 22]. As above, interesting sequences of nested radicals arise. For
 example,

 (2+5+ is-6V )=1j+V5+V6-5+ 5+C
 where the infinite sequence of signs +, +, -, +, has period 4.

 The theory of infinite sequences of nested radicals has not been well developed,
 probably because general theorems are difficult to obtain and convergence is slow.

 For further examples, theorems, and references to the literature, see [3, pp.
 108-112] and [5, Chapter 22].

 In the unorganized portions of his notebooks [26] and in the problem sections of
 the Journal of the Indian Mathematical Society, Ramanujan offers other problems
 on systems of equations. Thus, on page 338 of [26], he asks for the solutions of

 x - a y5 - b

 x2 - y y2_X =5(xy-1), x2- y y- _x

 where a and b are arbitrary constants. There are 25 pairs (x, y) of solutions. The
 special case a = 6, b = 9 appeared as Question 284 [20], [27, pp. 322-323] in the
 Journal of the Indian Mathematical Society. Ramanujan's solution was the only one
 received, and a similar solution to the more general problem can be found in [5,
 Chapter 22].

 Question 284 was the fourth problem that Ramanujan published in the Journal
 of the Indian Mathematical Society. The first five problems that Ramanujan posed
 to Journal readers were published under the name S. Ramanujam. Ramanujan
 and Ramanujam are two versions of the same Sanskrit name RAMANUJAHA,
 which means younger brother of Rama.

 We mention one further system of equations studied by Ramanujan. On page
 338 of his second notebook, Ramanujan asks, in slightly different notation, for the
 solutions of the system of 2n equations,

 xlyl1 + X212 + +X Yn1 = a., 1 <j < 2n, (3.4)

 where x1, ..., xn, Y1, .., Yn are 2n unknowns, and in his short paper [21], [27, pp.
 18-19], Ramanujan presents his clever solution, which we briefly indicate.

 Ramanujan defines

 n X

 E- ' l (3.5) = 1 - 0y1

 When 'p(0) is expanded in a power series in 0, it is seen that the coefficient of 0k
 is ak+1, 0 < k < 2n - 1. On the other hand, (p(0) has the form

 S?(1) 1 + E>-1BIOj (3.6)

 Clearing the denominator in (3.6) and using the aforementioned power series for

 p(o), we can determine first the coefficients Bj, 1 < j < n, and secondly the
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 coefficients Aj, 1 < j < n, in terms of a1, a2, .. ., a2n by equating coefficients of
 like powers of 0. Having explicitly determined Ai and Bj, 1 < j < n, we substitute
 these values into (3.6) and once again expand (p(O) into partial fractions. Compar-

 ing the result with (3.5), we determine xi and y1, 1 < i < n.
 It is easy to see that the system (3.4) is equivalent to the single equation

 n Xi( iS t2n-1 2n-1 2n- 1 , xi(y,s + t)2 1 = 2? 2n -1 aj+ls1t2n-1-j
 i=l j=

 Thus, Ramanujan's query is equivalent to the question: When can a binary
 (2n - 1) - ic form be represented as a sum of n (2n - 1)th powers? In 1851,
 Sylvester [28, pp. 203-216, 265-283] found the following necessary and sufficient
 conditions for a solution: The system of n equations

 a1u1 + a1+1u2 + * * +aj+nun+1 = 0, 1 <j < n,

 must have a solution u1, u2, . U. .n u1 such that the n - ic form
 n

 p(w, Z) E Uj+lWiZnj
 j=0

 can be represented as a product of n distinct linear forms. This is true for a

 general 2n-tuple (a1, a2,. . , a2n) in the sense of algebraic geometry. Thus, the
 numbers y1, y2,. . *, Yn are related to the factorization of p(w, z). Sylvester's
 theorem belongs to the subject of invariant theory, which was developed in the late
 19th and early 20th centuries. For a contemporary treatment, but with classical
 language, see a paper by J. P. S. Kung and G.-C. Rota [14].

 We next consider the following theorem of Ramanujan [26, p. 325].

 Theorem. Let a, /3, and y denote the roots of the cubic equation

 x3 - ax2 + bx - 1 = 0. (3.7)

 Then, for a suitable determination of roots,

 a1/3 + 131/3 + ,1/3 = (a + 6 + 3t)1/3 (3.8)
 and

 (af3)1/3 + (f3) 1/3 + (ya))1/3 = (b + 6 + 3t)1/3, (3.9)
 where

 t3 - 3(a + b + 3)t - (ab + 6(a + b) + 9) = 0. (3.10)

 Since this beautiful elementary theorem is evidently new and since a short proof
 can be given, we provide one here.

 Proof: Noting, from (3.7), that a,fy = 1, let

 z3 _ Oz2 + (pz-1 = 0 (3.11)

 denote the cubic polynomial with roots a1/3, 181/3, and Y1/3, chosen so that their
 product equals 1. Cubing both sides of the equality

 z31 =Z2_ -pz,

 we find that

 (z3 - 1)3 _ 03Z6 + (p3z3 + 30Dz3(z33- 1) = 0. (3.12)
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 Since a'1/3, p81/3, and yl/3 are roots of (3.11), they are also roots of (3.12). As a
 cubic polynomial in z3, (3.12) thus has the roots a, f3, and y.

 Comparing (3.7) and (3.12), we deduce that

 a =03 + 3 - 306 p (3.13)

 and

 b =p3+ 3 - 30<p. (3.14)

 If we define t by

 03= a + 6 + 3t, (3.15)

 then, by (3.11) and (3.15),

 a 1/3 + 131/3 + y 1/3 = 0 = (a + 6 + 3t)1/3,

 which proves (3.8). Also, by (3.13)-(3.15),

 (p3 =b -3 +30p =b +03-a =b +6+3t. (3.16)

 Hence, by (3.11) and (3.16), (3.9) is established. From (3.13) and (3.15),

 3 + t = 0fp. (3.17)

 Thus, by (3.15)-(3.17),

 (3 + t)3 = 03-p3 = (a + 6 + 3t)(b + 6 + 3t).

 Expanding both sides, collecting terms, and simplifying, we deduce (3.10).

 On page 356 of [26], the last page of the second notebook, Ramanujan offers
 the equalities

 (Cos g) + (Cos g) C- (COS _) = ((91/3 - 2)) (3.18)

 and

 (e2 7)'/3+ 4wF 1/3 1/ w
 (sec g-) + (sec - sec- = 91/3 1)1 (3.19)

 which are applications of (3.8) and (3.9), respectively, with a = 0, b = -3, and

 t = -9 3. Equality (3.18) was posed as a problem by Ramanujan in the Journal of
 the Indian Mathematical Society [23], [27, p. 329]. Proofs of (3.18) and (3.19) can

 also be found in Berndt's book [5, Chapter 22].

 4. NUMBER THEORY. Suppose p is a prime and n is a positive integer. Then, by
 a well-known theorem in elementary number theory [19, p. 182], the highest power

 of p dividing n! equals

 E [-] = N.
 Despite the widespread use of this theorem by number theorists for many years,

 the inequalities

 n log(n + 1) n-1

 p - 1 log p p - (

 given by Ramanujan [26, p. 378] in his third notebook do not appear to have been
 heretofore noticed. Both inequalities in (4.1) are sharp. If n = pm for some
 positive integer m, an elementary calculation shows that N = (n - 1)/(p - 1).
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 On the other hand, if n = ptmt' - 1, by a direct calculation with the observation
 that m + 1 = log(n + 1)/log p,

 n log(n + 1)

 p - 1 log p

 In fact, Ramanujan stated (4.1) with p replaced by an arbitrary positive integer
 a 2 2.

 Bhargava, Adiga, and Somashekara [7] have given one proof of (4.1) when p is
 any positive integer exceeding 1. We offer another proof here.

 Proof of (4.1): First, by writing n in base p, i.e., by setting

 m

 n= E bjp', O <bj <p-1, bm O,
 j=O

 we find, after a straightforward calculation, that

 n 1 m

 N =_ - E bj, (4.2)
 p-i p-l1 =0

 and so the second inequality in (4.1) follows.
 The first inequality in (4.1) is more difficult to establish. We are very grateful to

 B. Reznick for supplying the following elegant proof.
 Set

 m

 b = E bj.
 j=O

 Then, by (4.2), it suffices to prove that

 log(n + 1)

 b?(P-1) logp (4)

 Write

 b = k( p-1) + r, O < r < p-2. (4.4)

 Then

 n 2 (p - 1)p? + (p - l)p + (p - 1)p2 + ... +(p - l)pk + rpk

 = (r + 1)pk - 1.

 It follows that

 log(n + 1) log((r + 1)pk)

 (p - 1) logp 2(p-l) logp

 log(r + 1)
 =k(p - 1) + (p - 1) l(45)

 By (4.3)-(4.5), we shall be finished with the proof if we can show that

 r <( )log(r + 1) (4.6) ?(p-1) log p(46
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 First, if r = 0, (4.6) clearly holds with equality.
 If r > 1, (4.6) can be written in the form

 r p-1

 log(r + 1) log p

 or

 f(r) <f(p - 1), (4.7)
 where

 x

 f (x): log(x + 1)
 However, by elementary calculus, f(x) is strictly increasing for positive integral x.
 Since 1 < r < p - 2, (4.7) is therefore valid with a strict inequality, and so the
 proof is complete.

 As remarked in the Introduction, we conclude this short sampling of Ramanu-
 jan's elementary discoveries with a note on 7r. Continued fractions provide
 excellent rational approximations to 7r. Thus, the simple continued fraction

 1 1 1 1

 w=3+ 7 + 15 + 1 + 293 +
 22 333 355

 yields the successive approximations - 106' 113. Note that
 355
 113 = 3.1415929...,

 which agrees with the decimal expansion of v = 3.14159 26535 ... through 6
 decimal places. The appearance of a "large" fourth partial quotient, 293, is
 primarily responsible for this success.

 Taking a brief diversion in his famous paper on approximations to Tr [24], [27, p.
 351, Ramanujan offers the approximation

 /1 1 1/4
 (972 - = 3.14159 26526. .. (4.8)

 which "was obtained empirically." How did Ramanujan deduce this unusual
 approximation, which is also found in his second and third notebooks [26, pp. 217,
 375]? N. D. Mermin [16], [17, pp. 304-305] has offered the best explanation for
 Ramanujan's approximation (4.8). In the decimal expansion of 7J 4 =
 97.409091034002..., observe that the pair of digits 09 appears twice in succession
 followed by the pair 10; which is 'close' to 09. Thus,

 2143 1 1
 97.40909090909... = = 97---

 22 2 11

 is a natural approximation to w7T
 Ramanujan's facility with continued fractions is unequaled in mathematical

 history, and so he might have observed that [16], [17], [4, p. 151]

 1 1 1 1 1 1

 2 + 2 + 3 + 1 + 16539 + 1 +

 Truncating this continued fraction just before the "super large" partial quotient
 16,539 gives the approximation (4.8).
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